DSN Automation

R. B. Crow

Radio Frequency and Microwave Subsystems Section

Automation of the DSN has been under consideration for the past several years and
has been justified on anticipated reduction in life cycle cost, resulting from increased

productivity and reduced operations cost.

This article summarizes an overall hierarchical automation philosophy along with the
results of the RF automation effort undertaken 2 years ago. A brief description of each
subassembly controller’s salient features, the software development process, and the
common software used by these controllers will be presented. Comments will be made
with respect to the relative advantages of PL/M high-level language and assembly
language, the operational effectiveness of operator “Macro commands,” and the program
development, and a list of suggested future effort will be given.

This article provides for technology transfer and offers new ideas for consideration in

future automation efforts.

l. Introduction

A philosophy of an hierarchical automation plan has been
developed that emphasizes distributed control and the utiliza-
tion of DSN hardware development engineers to develop the
automation software.

Recent efforts in developing an automation capability for
the RF subsystem are reported on. Comments are made on the
facilities available to develop software for microcomputers and
the common software developed for the RF automation
demonstration.

88

Il. Automation Philosophy

Several years ago, the DSN began investigating automation
as a means of reducing DSN cost while furnishing the projects
with more and better service.

A demonstration was held at the Goldstone Mars Station,
DSS 14, in May of 1975, and more recently a second-
generation demonstration was held at JPL in order to gain a
data base. These experiences have contributed to the following
automation philosophy.

A convenient approach in automating the DSN is to divide
the task into four major areas: RF subsystems control, digital
subsystems control, antenna subsystems control, and station
control (see Fig. 1). This division of responsibility provides
good development management posture since the technology
base and administration control for each of the proposed
major areas are contained in a single technical section.

A. RF Subsystems Control

The RF subsystems automation (see Fig. 2) has been
accomplished by employing distributed control. Each major
class of equipment (microwave, receiver-exciter, subcarrier
demodulators, transmitters, RF subsystemn) has its own con-
troller. In. this way, one or two engineers can be held
responsible for assuring that the software they provide is
capable of configuring, calibrating, and operating their
equipment.

This is a slightly different approach from that implemented
by the station manager control (SMC 2A) project, where the
operator controls each of the RF subassemblies directly. The
extra level of control (i.e., the subsystem controller) offers
better monitoring, control and failure backup, and diagnostic
capability than that offered by the SMC 2A approach, since
the particular RF subsystem controller can devote most of its
resources to monitoring and controlling the subsystem, and
the required software to complement failure backup and
diagnostics can be developed by the cognizant development
engineer (CDE) of the equipment.

The RF subsystems controller serves the same function as
the SMC in that it is responsible for subsystems coordination
and is a focal point for all operator/machine interfaces.
However, it differs from the SMC design in that it is intended
that all RF subsystems at a DSS can be controlled from one
control channel, instead of requiring three as the SMC has
been implemented.

An important observation is that the further the controller
is from the hardware, the more the level of detail is reduced
(i.e., a CALIBRATE command to a receiver controller involves
a large number ot highly complicated communications, while a
CALIBRATE command to a RF subsystem controller has little
detail but more concern with subsystem coordination. A
CALIBRATE command to the station controller would be a
very high-level command with only simple intrasubsystem
coordination required).

B. Digital Subsystems Control

The metric data subsystem (MDS) currently contains the
same control structure used by the RF subsystems. A host task
via the data system terminal is capable of controlling the other

subsystems controllers (i.e., metric data assembly, command
processor assembly, telemetry processor assembly, and com-
munication monitor formatter). Further, each of the
previously mentioned assemblies is also capable of configura-
tion control and monitoring the digital hardware assemblies
under its control (i.e., the telemetry processor controls the
symbol synchronizer and the decoders).

C. Antenna Subsystems Control

The automation of the antenna mechanical subsystem will
consist of antenna pointing as well as increased monitoring and
control of the antenna servo and drive subsystems, so that
unattended station operation is possible.

D. Station Controller

The station controller should be the focal point of the
station and communicate with the operator in a high-level
language. It should be adaptable and offer innovative solutions
to new operational problems (i.e., each subsystem should have
the ability to “read and write” all the functions in its area, but
the station controller should be responsible for the “composi-
tion” of new operational scenarios). In this way, the antenna,
RF subsystems, and digital subsystems areas can remain
relatively unaffected, thereby localizing the changes to the
station controller to meet the unexpected new problems. This
division of control allows a viable fallback position for
semiautomatic operation of the station should the station
controller fail.

Some attention should be given to allowing the generation
in near-real time of new operational scenarios. The new tools
that will emerge from the integration of an automated statior,
such as improved acquisition procedures, real-time evaluation
of downlink performance, rapid reconfiguration, etc.. offer a
considerable reward in increased productivity and should be
pursued vigorously.

lll. RF Automation Summary

The RF automation demonstration conducted in May 1975
(ret. DSN Progress Report 42-29, p. 66) identified two major
goals for future activity:

(1) Improve hardware/software reliability and maintain-
ability.

(2) Improve the operational effectiveness ot the automa-
tion programs by providing @l existing operator con-
trols and ofter new, etfective high-level
operational techniques.

more

89

In answer to the problem of reliability and maintainability,
an automation microcontroller was developed (ref. DSN
Progress Report 42-30, p. 144) which appears to have satisfied
the first goal.

Heavy Viking schedule pressure on DSS 14 caused the

second RF demonstration, scheduled for November 1976, to

be canceled. The demonstration was then rescheduled for the
Compatibility Test Area at JPL (CTA 21); however, this has
been subsequently delayed. A sequence of demonstrations is
planned to be run at the Goldstone Venus Station, DSS-13, in
FY’77 and ’78 to demonstrate unattended station operation.

A JPL “lab” test has been run, in which the system
capabilities have been exercised by simulating the proposed
CTA 21 RF subsystem (the microwave subsystem, the Block
[V receiver-exciter and the Block III subcarrier demodulator
assemblies), that appears to have the capability of measurably
expanding the operational tracking time in the DSN.

A brief description is presented for each subassembly
controller in an attempt to illustrate any special features it
may have and to note any change in its functional capability
that was not present in the first RF automation
demonstration.

A. RF Subsystems Controller

The RF subsystems controller links the operator (see
Fig. 2) to the RF subsystems (i.e., microwave, Block IV
receiver-exciter, and subcarrier demodulator assembly [SDA])
by accepting the operator’s high-level input commands and
distributing these commands to the appropriate subsystem
controller. The RF subsystems controller also controls all
subsystem coordination required to calibrate and acquire,
maintains system status, and forms and stores mission
configurations.

The RF subsystem controller has four phases (initiate,
configure, calibrate, and operate). An improvement in opera-
tional effectiveness was achieved by allowing the operator to
select any operational phase, instead of having a set sequence.
The calibrate phase was modified to allow zero-delay range
calibration and bit error test for the telemetry channel.

An important fundamental change was made to make the
RF subsystem controllers essentially “station-independent.” A
subroutine was designed that allows the implementation of
any set of logic tables which will direct its question to a
particular input source. It the source message satisfies two test
conditions (as programmed in the logic tables), the routine will
set those status vectors identified in the logic table (for
internal program control), send out control messages to other
controllers, and output operator messages as defined in the

90

logic table (i.e., if receiver-exciter subsystem [RCV] 3 sends a
calibration complete message and if SDA 1 is connected to
RCV 3, then set F23=1, send SDA 1 a calibrate command,
and notify the operator via the cathode-ray tube [CRT] and
teletype [TTY] that “RCV 3 has calibrated”).

Because of the station independence resulting from this
subroutine, the conversion from a DSS 14 design to a CTA 21
design was completed in less than a week. In fact, such
versatility was designed into the program that it could readily
be applied as an RF subsystem controller, or a station
controller, at any DSS.

Table 1 documents the details of the software development.

B. Subcarrier Demodulator Assembly Controller

The SDA controller can control and monitor up to six
SDAs. These SDAs can be either automated Block I1I SDAs or
a standard Block IV SDA. The SDA controller determines how
many and what type of SDAs are connected to it (by
analyzing the monitor words returned by the SDA). Knowl-
edge of the type of SDA (Block III or Block IV) is required to
properly configure and diagnose failure in the SDAs. A
continuous monitor is kept to assure that all required
references are present, that all relays are operating correctly,
and that all control switches that are not under computer
control have been set correctly.

Diagnostics are restricted to those that can be deduced
directly from the SDA monitor words, which in general will
not isolate the problem to a particular replaceable module.
Future expansion of these diagnostics is planned for later
development (see Table 1 for details of software development).

C. Receiver-Exciter Controller

The receiver-exciter (R-E) controller can control one Block
IV receiver-exciter subsystem (consisting of two S-X receivers,
one S-X exciter, three programmed oscillators, an instrumenta-
tion control assembly, and a time code distribution assembly).
The subsystem elements can be operated independently or in
any combination to allow one-way, two-way, or three-way
operations.

The R-E controller is controlled by the RF subsystem
controller; however, in a backup mode it can be controlled by
a local TTY. A second “standard” mode allows the station
monitor and control assembly (SMC) 2A to control the R-E
controller either from the SMC console or the SMC keyboard.

A continuous monitor is maintained on all necessary
conditions for operation (references are present, all relays
confirmed, the actual configuration agrees with the last

operator configuration input, etc.). All programmed oscillator
performance is measured against a locally generated model to
confirm its operation.

The R-E controller is capable of effecting automatic carrier
acquisition and automatic gain control (AGC) calibration
(selectable from single point to 50 points in integer steps).

The R-E controller has a preliminary set of diagnostics built
in and is capable of outputting current status of VCO
frequencies, exciter frequency, configuration, dynamic and
status phase error, AGC, etc. (see Table 1 for details of
software development).

D. Microwave Controller

The antenna microwave subsystem (UWV) controller can
control up to 5 bays of microwave equipment (approximately
65 microwave switches).

The program has been structured to be station-independent
by incorporating a “station configuration overlay.”

Since it is possible to attempt impossible (or catastrophic)
configurations, an internal editor resident in the UWV control-
ler reviews all input configuration messages to determine if
they are acceptable. The UWV controller will configure all
those switches that are allowable and issue a diagnostic
warning to the operator for those switches that could not be
configured.

A continuous monitor is kept on all relays, and an operator
diagnostic message is sent in case of failure (see Table | for
details ot software development).

IV. Software Development

Stand-alone microcomputer high-level compilers did not
exist at the time the RF automation project was started, since
industry had adopted the use of larger, general-purpose
computers to serve as the program development tacility.

Presently there are two development computers at JPL
equipped with functioning assemblers and PL/M compilers.
(PL/M is an offshoot of IBM’s PL/I. PL/M is a block
structured language, well suited to structured programing, and
has been adopted by both Intel [8080} and Motorola [6800],
which are the current industry leaders.)

The Univac 1108 system (see Fig. 3) allows program
development via a time-shared terminal through a high-speed
modem. Once the program has been compiled, a paper tape is
made through the 8080 microcontroller/high-speed punch.

This paper tape contains the object code that is read into the
target microcontroller.

The Sigma 5 computer (see Fig. 4) has the same assembler
and PL/M compiler installed in it. The operation of this
equipment is similar to that of the Univac 1108 except that
program development is via the batch mode and the object
code is punched on cards. It is currently necessary to use a
MAC 16 minicomputer to convert from the Sigma 5 cards to a
paper tape suitable for input to the 8080 microcomputer.

A third development system (see Fig. 5) appears to be
available in the near future. Intel has offered a “‘stand-alone”
PL/M compiler that requires a 8080 microcomputer system
with 64K bytes of memory and a floppy disk. The software
for this compiler has been ordered and is due in the near
future.

V. Common Software

A set of common software was developed to improve
software maintainability and to reduce the overall RF sub-
system software development activity. The common software
consists of a variety of utility routines to make program
development easier and to assist in debugging applications. The
corimon software can be categorized as follows:

(1) Operator control via the console keyboard.
(2) Input/output (I/O) intertace procedure.
(3) String procedures.

(4) Arithmetic procedures.

A. Operator Control Via the Console Keyboard

It is assumed that all controllers have an executive routine
that monitors the console input. This software routine is
used to handle all operator console keyboard inputs. The KEY
routine has an editing capability so that the configuration data
under consideration can be loaded, displayed, and changed, a
tape of the desired configuration can be punched, and it can
catalog or delete the entry and set the required global control
variable used by the main program. (See Appendix 1 for
examples of the operator display tor the RF subsystems.)

B. 1/0 Procedures

1/O procedures are high-level PL/M routines to control the
standard 15-line intertace, the star switch controller. the
console device, the TTY, paper punch, and reader. (See
Appendix Il for a description of the I/O procedures.)

91

C. String Procedures for PL/M

Various string procedures have been written to aid PL/M
programmers in formatting, analyzing, and performing other
string manipulations. The string procedures perform the
following manipulations:

(1) Concatenation

(2) Segmentation

(3) Comparison

(4) Nulling

(5) Binary to ASCII decimal conversion

(6) Binary to ASCII hexadecimal conversion

(See Appendix 111 for a description of the string procedures.)

D. Arithmetic Procedures

Fixed-length, variable point arithmetic has been imple-
mented because of the receiver-exciter control assembly’s need
for high precision. (See Appendix [V for a description of the
arithmetic procedure.)

E. General Comments

The software development for the second RF demonstra-
tion was started in August 1975. The original estimate called
for in an “in lab” demonstration by April 1976. This
demonstration actually took place 5 months later than
planned. Analyzing the reasons for the delay leads to the
tollowing observations.

The programs were more complex and detailed than first
conceived in August 1975. The primary cause of the unfore-
seen complexity was a desire to be “‘station-independent” and
produce “better operational effectiveness.”

92

Several weeks’ delay was caused by the installation of the
PL/M compiler in the Univac 1108 computer with sufficient
working core to handle programs up to 36K bytes. An
interesting side note is the considerable unseen expense of
Univac 1108 computer time. A 30K byte PL/M program costs
approximately $50 to compile!

It is interesting to note that the PL/M programs require
approximately 11 bytes/record, while the assembly program
(microwave controller) required approximately 4.5 bytes/
record (ie., PL/M takes two and a half times more storage
than the assembly language). However, since PL/M is a
higher-level language, it is not surprising that each PL/M record
would take the place of several assembly records. What small
premium is paid for in memory efficiency is more than offset
by improved program readability and maintainability.

The communication between computers was through the
standard star switch and was found to work well (the interface
software was written in assembly language and was under
interrupt control) when the RF subsystem was in a “stand-
alone” configuration; however, if' later plans call for an
integration of the RF subsystem into a station complex, a
high-speed interface must be designed in order for the RF
subsystem to communicate at the required 250K SPS (instead
ot the current 1K SPS).

VI. Summary

The RF automation effort has developed a capability to use
the new microcomputer technology to make automation
practical from a cost and reliability viewpoint.

An interesting and valuable side benefit is the capability
that now exists of the software engineer being the same person
as the hardware engineer. This capability greatly enhanced the
“operational effectiveness” of the finished software.

Table 1. Second RF demonstration software development data

Storage Software Development

No. of . Time, man-weeks Computer
Program Name Requirement,
Records bytes Language
v Design Code Debug
Common software
Star 1125 2K 2 2 2 Assembly
15-line interface 600 1K 2 2 2 Assembly
Arithmetic string 675 5.4K 3 3 2 PL/M
procedures
Key 3000 11K 3 3 6 Assembly
RF Demo 1750 18K 26 8 10 PL/M
SDA 600 6.5K 8 4 4 PL/M
R-E 3000 34K 24 12 10 PL/M
uwv 4000 18K 26 6 8 Assembly

Note: 1. Time to install and check out PL/M compiler in Univac 1108 and the Sigma 5 was not counted against this development.
2. Most programmers were learning the language (except for the SDA programmer).

3. Main problem during development has been access to PL/M compiler and assembler.

93

CRT
OPERATOR a—l SIGMA 5
INPUT/OUTPUT
HIGH-SPEED
DATA LINE
DSS 13
STATION
CONTROLLER
i
ANTENNA RF SUBSYSTEMS DS s
CONTROLLER CONTROLLER P,
ANT. POINT MICROWAVE MDA
ANT. SERVO R-E TPA
SDA cPA
XMIT

Fig. 1. Block diagram of DSS 13 unattended station control

configuration
CRT/KEYBOARD
OPERATOR 1/0
PAPER TAPE READ o| RF SUBSYSTEM TTY PRINTER
STORED CFG CONTROLLER LOG
[
STAR SWITCH
ASSY

Jt 1t
' !

TRANSMITTER MICROWAVE RECEIVER- SUBCARRIER
CONTROLLER CONTROLLER EXCITER DEMOD ASSY

CONTROLLER CONTROLLER
20-kW S-BAND CONTROL UP MODIFIED BL IV SDA
XMTR TO 5 BAYS OF BL Il R-E

UWYV SWITCHES
CONFIG EDITOR

BL IV POCA

Fig. 2. Block diagram of DSS 13 RF subsystem automation configuration

LISTINGS
DIAGNOSTICS
PL/M
UNIVAC 1108-8080 HIGH-SPEED
SOURCE CROSS PROGRAM UNIVAC 1108 MODEM
CODE COMPUTER <—{ (1200 BAUD)
[
ASSEMBLY
LANGUAGE Y
8080 MICRO- PAPER TAPE *g(ggé)gﬁ(:]'
CONTROLLER PUNCH PAPER TAPE
8080 OBJECT
EPROM
= CODE ON
PROGRAMMER EPROM

PL/M

Fig. 3. 8080 software development using the UNIVAC 1108/8080 development system

SOURCE
CODE

SIGMA 5 - 8080
CROSS PROGRAMS

SIGMA S
COMPUTER

LISTING
DIAGNOSTICS
» OBJECT CODE
ON BINARY
CARDS

ASSEMBLY
LANGUAGE

MAC 16
BINARY CARD
TO PAPER
TAPE
CONVERSION

8080 OBJECT
o CODE ON
PAPER TAPE

Fig. 4. 8080 software development using the Sigma 5/MAC 16 system

| LISTING
oL 8080 OBJECT
SOURCE CODE PAPER TAPE
DIAGNOSTICS = L CODE ON
PUNCH PAPER TAPE
SOURCE
CODE INTEL MDS @
3 8080 OBJECT
EPROM
PAPER TAPE L e CODE ON
READER L PROGRAMMER | Fop o
DUAL FLOPPY
DISK 1515 1i
OPS SYSTEM
ASM 80
MACRO ASSY 8080 MICRO- | 8080 OBJECT
Lo L e CODE ON
PL/M CONTROLLER [$OF
COMPILER
PROGRAM
STORAGE

Fig. 5. Stand-alone 8080 software development system

95

Appendix A

“Key”’ Operator Display

l. Receiver 3 Configuration

A BACKUP = R3(R3, R4, NONE)

B LOOP MODE = WIDE (WIDE, NARROW)

C LOOP BW = 4(4,3,2,1)

D BANDSELECT = X(X,S)

E AGCBW = WIDE (WIDE, MED,
NARROW)

F TELEMETRY BW = 3(4,3,2,1)

G ATZENABLE = ON(ON, OFF)

H LOOPFILTER = OPERATE (SHORT,
OPERATE)

p—

LO AGC INPUT

1l

NORM (EXT, NORM)

J TRANSFER FCN = 2ND (3RD, 2ND)

K RECEIVER LOOP = OPEN (OPEN, CLOSED)

L LOREF = ON (ON, OFF)

M LO REF TO = EX4(EX4, EX3, EX2, EX1)
N LO OUTPUT = ON (ON, OFF)

O PREDIX SET = 11 (UL1LTY)

SAMPLE, CFG/R3/F=2/D=S$

Note: This is a typical Block IV receiver frame. All
configuration switches are listed so that no oversight is
possible. The KEY program allows these frames to be updated
to reflect any mission configuration. Once all subassembly
contigurations are updated to the desired state, a paper tape
can be punched so that this operational configuration can be
recalled at will. This feature allows “offline” generation of
operational configurations and fast retrieval so that quick
turnaround is possible.

Il. Exciter 1 Configuration

A RANG MODSON = 2 3(MISS G ARE OFF)

B CMDMODSON = 1234(MISSG ARE OFF)

C BAND SELECT = X(X.S)

D PHCTLLOOP = OPERATE (SHORT,
OPERATE)

E MODDLY LOOP = SHORT (SHORT. OPERATE)

DOPPLER

NORM (SIMULATE, NORM)

96

G
H
I
J
K
L
M
N
0
p

EXC FREQ
CMD PH MOD
DOPPLER BIAS
EXC BAND
EXC DRIVE
EXC TEST SIG
PH CTL LOOP
STEP ATTN
PULS ATTN
XB STEP ATTN

NORM (SIMULATE, NORM)
NORM (BYPASS, NORM)
+(+,)

X(X,S)

ON (ON, OFF)

ON (ON, OFF)

EXC (EXC, KLYSTRON)
X(X,S)

X(X,8)

ZRO DLY (ZRO DLY, TEST)

SAMPLE, CFG/EI/A=13/C-S$

lil. Exciter 2 Configuration

-z O Tmmg O w >

T O Z 2 R -

X-BAND EXC
TRAVSL (S/S)
TRAVSL (S/X)
TRAVSL (X/X)
ZRO DLY (S/S)
ZRO DLY (S/X)
ZRODLY (X/X)
SB REFS ON
XB REFS ON
SB PULS ATTN
XB PULS ATTN
SB PULS ATTN
XB PULS ATTN
STEP ATTN
PULS ATTEN
PREDIX SET

DSN (RADAR, DSN)

ON (ON, OFF)

ON (ON, OFF)

ON (ON, OFF)

ON (ON, OFF)

ON (ON, OFF)

ON (ON, OFF)

1 2 3 4(MISS G ARE OFF)
1 234 (MISS G ARE OFF)
NORM (BYPASS, NORM)
NORM (BYPASS, NORM)
NORM (BYPASS, NORM)
NORM (BYPASS, NORM)
19 (2-DIGIT INTGR)

199 (3-DIGIT INTGR)

1 (111, 11, 1)

SAMPLE, CFG/EII/N=99/B=OFF $

IV. SDA 1 Configuration (Block lll)

A
B

BACKUP
INPUT

S1(S1, S2, NONE)
R1 (TEST, TAPE, R2, R1)

@)

VCO SHORT

D LOOP BW

= o m M

MOD INDEX
SUBCARRIER
SYMBOL RATE
OUTPUT

1

OFF (ON, OFF)

WIDE (WIDE, MED,
NARROW)

30 (0-30 DB)
24000.00 (HZ)
99.00 (5.6 - 270000.0)

DEMOD (TEST, TAPE,
DEMOD)

SAMPLE, CFG/SDAI1/A=S2/D-MED/E=6%

V. SDA 5 Configuration (Block IV)

- n & mm g O w

zZ 2 0 R

BACKUP
LOCAL INPUT
REMOTE INPUT
INPUT

VCO SHORT
LOOP BW

LOOP GAIN
AUTO ACQ
MODE SELECT

MOD INDEX
SUBCARRIER
SYMBOL RATE
DEMOD OUTPUT
LOCAL OUTPUT

1

1

1

1l

fl

1t

i

NONE (S5, S6, NONE)

TEST (TEST, TAPE)
R2(R2,R1)

REMOTE (LOCAL, REMOTE)
OFF (ON, OFF)

WIDE (WIDE, NARROW)
HIGH (HIGH, LOW)

ON (ON, OFF)

INTRPLX (INTRPLX,
NORM)

30(0-31DB)

32012.10 (HZ)

199.00 (5.6 - 500000.0)
ON (ON, OFF)

TEST (TEST, TAPE)

SAMPLE, CFG/S5/B=TAPE/M =0ON 3

VI. Uplink Configuration and Status Data

A
B

PREDIX
EXCITER

ALT EXCITER
XMITTER
ALT. XMITTER

POWER

G ALT POWER

(1L, I, T)

EXCI (EXC1 & 2, EXC2,
EXC1)

EXC2 (EXC1 & 2, EXC2,
EXC1)

400 R&D (400 R&D, 400 KW,
20 KW)

20 KW (400 R&D, 400 KW,
20 KW)

390 (KWS)
20 (KWS)

H CONE = SPD (SPD, WTRLD)

I POLARIZATION = LINEAR (LINEAR, RCP,
LCP)

J ANGLE = 180 (DEGREES)

K CONE MODE = 1 (SEE MODE PROMPT)

SAMPLE, CFG/UL/A = 11/G = 39°/H = WTRLD$

MODES: 1. XMIT, 2. R&D, 3. LNRCV, 4. LN BYPASS,
5. DUAL RCV, 6. DUAL BYPASS, 7. DIPLX,
8. CALSPD TWM, 9. CAL MOD TWM,
10. SAFE.

Note: This frame also serves as an uplink status since power
(item F) will be the “actual” uplink power.

VIl. Downlink 1 Configuration and
Status Data

A PREDIX = (1L ILT)

B CODE = SPD (SPD, XKRA, XK, RB,
XRO)

C POLARIZATION = RCP(LINEAR, RCP, LCP)

D ANGLE = 0 (DEGREES)

E CONE MODE = 4 (SEE MODE PROMPT)

F

G ALT CONE MODE = 5(SEE MODE PROMPT)

H RECEIVE = R3(R1,R2,R3,R4)

[ALT RECEIVER = R4(RI,R2, R3,R4)

J BL3SDA = 12 (MISSING ARE OFF)

K BL4SDA = 56 (MISSING ARE OFF)

L ALT 3SDA = 2 1 (MISSING ARE OFF)

M ALT 4 SDA = 65 (MISSING ARE OFF)

N RECEIVER LOCK = ON

O BLK 3 LOCK = 1,2

P BLK 4 LOCK = NONE

SAMPLE, CFG/PL1/A =1II/B = XRO/K = 568

MODES: 1. XMIT, 2. R&D, 3. LNRCV, 4. LN
BYPASS, 5. DUAL RCV, 6. DUAL BYPASS,
7. DIPLEX, 8. CAL SPD TWM, 9. CAL MOD
TWM, 10. SAFE.

Note: This frame also serves as a downlink 1 status, since

items N, O, P reflect the in-lock status of the receiver and
associated SDAs.

97

VII. Predix 1 Configuration

98

A

— O mm g O w

S/C CHANNEL
ACQ BW

ACQ DOPPLER
ACQ RATE
DOPPLER RATE
RATE 2

RATE 3

TIME ¢

1

1]

0.000000000000 (MHz)
0.000000 (Hz)

0.000000 (Hz)

0.000000 (Hz/SEC)

0.000000 (Hz/SEC)

0.000000 (Hz/SEC)

0.000000 (Hz/SEC)
000$000000 (DDD$HHMMSS)

I TIME 1 = 000$000000 (DDD$HHMMSS)
J TIME 2 = 000$000000 (DDDFHHMMSS)
K TIME 3 = 000$000000 (DDD$HHMMSS)
L EXCDRIVEON = 000$000000 (DDDgHHMMSS)
M RANG MODS ON = 000$000000 (DDD$HHMMSS)
N CMD MODSON = 0008000000 (DDD$HHMMSS)

SAMPLE, CFG/P1/K=100/65959/G-45%

Note: There are three Predix displays.

Appendix B
170 Routines

I. Standard Interface Input and Output

The standard 15-line interface [/O routines are called
L15IN and L1SOUT for the input and output routines,
respectively. The call for input is

CALL 15 IN(PORT,TIMESOUT, DATAJARRAY MAX$LENGTH);

where 1 < PORT < 12 defines which of the standard
interfaces is to be assessed. TIMESOUT is a positive integer
indicating the time-out period, DATA$ARRAY provides the
address of the data array to receive the input data, and
MAX$LENGTH is an integer defining the maximum number
of bytes of input to accept. Note that the data array is a
byte array. The calibration of one count in a time-out period
will be established empirically and published later.

The routine LISIN sets the following items prior to
exiting:

— FAIL to indicate successful receipt of data or failure

— FUNCTION to the received function code if data were
received

— IO$LENGTH to the number of bytes received
— DATASARRAY receives the actual data bytes

The routine L1SIN also utilizes the following global data
items to determine its functional behavior:

— LOCKOUT to decide whether the routine should
manipulate the enable/disable status of the interrupt
system

Note that if the function code changes during input, the
input is terminated. The user can pick up the data using the
new function code by calling L15IN again.

The call to output via a standard 15-line interface is as
follows:

CALL 1SOUT(PORT ,FCN,TIMESOUT, DATAJARRAY ,LNGTH);

where 1 < PORT < 12 indicates the 15-line interface to use,
0 < FCN < 3 indicates the function code to pass with the
data, TIMESOUT is a positive integer indicating the time-out
period, DATASARRAY contains the byte(s) to output over
the intertace, and the positive integer LNGTH indicates the

number of bytes to output with the given function code
over the interface.

The routine L150UT modifies the following items prior
to exiting:

— FAIL to indicate success or failure of the transfer

— 10$LENGTH to the actual number of bytes transferred
(= LNGTH if a successful transfer)

— FUNCTION to the received function code if the
computer was outprioritied by the device during or
prior to the transfer

The routine L150UT utilizes the following global data
items to determine its proper functional behavior:

— LOCKSOUT to decide whether the routine should
modify the interrupt system enable/disable status

— STCOP to decide on the disposition of STC at the end
of the transfer

Il. Star Switch Input and Output

The star switch input and output routines, STARIN and
STAROUT, respectively, are described separately from the
15-line interface routines because of routing parameters and
other differences in the calling sequences.

For the RF automation demonstration, the following
STARSID will be used for routing:

STARSID Subassembly
0 RF Auto. Demo Controller
1 R-E Controller
2 SDA Controller
3 UWYV Controller
4 XMT Controller
5 CCA future
6 NOCC
7 SMC

Note that when a message is received from STARIN, the
global variable SOURCESID contains the process code
(STARS$ID) of the source of the message.

99

The call for star switch input is
CALL STARIN (DATASARRAY MAXSLENGTH);

where DATASARRAY is a byte array of length
MAXSLENGTH, which will receive the first waiting message
received over the star switch. Note that since star switch
input is triggered by interrupts, the star switch input logic
may have 0, 1, or multiple messages already within the
computer memory.

The routine STARIN sets the following items prior to
returning to the caller:

— FAIL to indicate successful/unsuccessful receipt of the
data message (successful, always, for the user)

— STAR to indicate whether data were passed back to
the caller

— 10$LENGTH to indicate the number of bytes in the
message

— SOURCESID to furnish the process code of the system
sending the message to this assembly

The call to output via the star switch controller is as
tollows:

CALL STAROUT (DESTINATION,.DATAJARRAY.LNGTH);

where 0 DESTINATION 15 is the process code to which to
send the message, which is of length, LNGTH, in bytes, and
is stored in the byte array, DATABARRAY. The user must
have previously set the global variable, STARSID, to the
process code of this computer.

The routine STAROUT sets the following global data
items: '

FAIL to
operation

indicate the success or failure ot the

- 10$LENGTH to the actual number of bytes output

The routine STAROUT utilizes the following global data
items for control:

- STARSID, the process code being sent trom

The function code used over the star is FO-FT = 0. The
common software autdmatically transmits and verifies a
checksum byte and also sends an acknowledge block for a
successfully received message. These functions are performed
automatically by the common software. so they are ot no
concern to the user.

100

lll. Console Input and Output

The standard routines for console input and output are
called CONIN and CONOUT, respectively. The call for
console input is

CALL CONIN(.DATAJARRAY MAX$LENGTH);

where the byte array DATASARRAY is to receive the input
bytes and MAX$LENGTH is the maximum number of bytes
to accept into the array.

The routine CONIN sets the following global items prior
to returning to the caller:

— FAIL to indicate the success or failure of the opera-
tion
— 108LENGTH to indicate the actual number of bytes

received

The routine CONIN looks for a carriage return to mark the
end of an input operation.

The call for console output is
CALL CONOUT(.DATASARRAY,LENGTH);

where the data to output are in the byte array
DATASARRAY and precisely LNGTH bytes are to be
output.

The routine CONOUT sets the following global data items
prior to returning to the caller:

— FAIL to indicate the success or failure of the I/O
operation

— 10$LENGTH to indicate the number of bytes actually
output

IV. Paper Tape Input

The routine PTR is used to get paper tape input. The
calling sequence is

CALL PTR(C.DATASARRAY MAXFLENGTH):

where the byte array DATASARRAY is to receive the input
bytes and MAXSLENGTH is the maximum number of bytes
to accept into the array. The routine PTR sets the following
global data items prior to returning to the caller:

- FAIL to indicate the success or failure ot the opera-
tion

— 10$LENGTH to indicate the actual number of bytes
received

V. List Output and Protocol

The routine to output to the TTY printer is called by the
statement

CALL LISTOUT (DATASARRAY, LNGTH);

where the data to output are in the byte array
DATASARRAY and precisely LNGTH bytes are to be
output.

The routine LISTOUT sets the following global data items
prior to returning to the caller:

~ FAIL to indicate the success or failure of the opera-
tion

— 10$LENGTH to indicate the number of bytes actually
output

The subassembly controller will use the TTY printer of
the RF demo controller using the following protocol:

(1) The subassembly controller will send a message over
the star switch with a TASK = list device request.

(2) When a message is received from the RF demo with a
TASK = list device available, the subassembly control-
ler will send a message with TASK-list MSG. and the
parameter string equal to or less than 72 ASCII
characters.

(3) This process is repeated, at a rate determined by the
RF demo controller until the message has been sent.
After the last line has been sent, the subassembly
controller sends a message with TASK = list device
released, which terminates this list process.

(4) Should a subassembly controller request the list
device when it is being used, the RF demo controller
will place the request on a FIFO que and send a
message to the subassembly controller with a TASK =
list device busy. When the list device is available, the
RF demo controller will send a message with TASK =
list device available.

VI. Punch Output
The call for high-speed punch output is

CALL HISPEED (DATASARRAY, LNGTH);

where the data to output are in the byte array
DATASARRAY and precisely LNGTH bytes are to be
output.

The routine TTYP sets the following global data items
prior to returning to the caller:

- FAIL to indicate the success or failure of the I/O
operation

rrrrr 10$LENGTH to indicate the number of bytes actually
output

101

Appendix C

String Procedures for PL/M

I. Editing Procedures

The editing procedures are

ADDSEG for appending a segment of one string to
another

APPEND for appending an entire string onto the end
of another

EQUATE for setting one string equal to another

SEGMENT for setting one string equal to a segment of
another

REPLACE for copying one string into a fixed portion
of another

A. The ADDSEG Procedure
This procedure, called by the statement
CALL ADDSEG (M1, M2, FIRST, LAST);

adds the segment from M2 (FIRST) to M2 (LAST) onto the
end of M1, thereby increasing the length of M1. Here M1
and M2 are two strings and FIRST and LAST are variables,
constants, or expressions indicating the segment of M2 to
add onto MI.

Special cases:

(1) If FIRST = 0, a value of 1 is used for FIRST.

(2) If the (LAST - FIRST + 1: = LENGTH TO ADD TO
M1)> (255~ M1(0): = SPACE IN M1), the segment
to add is reduced via LAST = 255 - M1(0) + FIRST -
1.

(3) If LAST > M2(0), M2(0) is used for LAST.

(4) 1t FIRST > LAST, no action is performed.

Normal case:

(1) M1(0) is increased by LAST - FIRST + 1.

(2) MI(I) = M2(J) for J = FIRST, ..., LAST, where I =
MI(0)+ | +J - FIRST.

102

B. The APPEND Procedure

This procedure, called by the statement
CALL APPEND(.M1,.M2);

adds the entire string M2 to the end of the string M1.

Special cases:
(1) M2 is void, no action is performed.
(2) M1 is full, no action is performed.

(3) Other special cases — see ADDSEG, as this procedure
is equivalent to ADDSEG (.M1,.M2,1,255).

Normal case:

M1 is increased in length by the largest segment of M2
that will add onto M1.

C. The SEGMENT Procedure

This procedure, called by the statement
CALL SEGMENT (.M1, M2 FIRST, LAST);

sets the string M1 equal to the selected substring from the
string M2.

Special and normal cases:

The string M1 is first nulled, then the procedure
ADDSEG is called via ADDSEG (.MI1,M2, FIRST,
LAST).

D. The EQUATE Procedure

This procedure, called by the statement
CALL EQUATE (M1,.M2)};

sets the string M1 equal to the string M2.

Special and normal cases:

(1) This procedure is equivalent to CALL NULL (.M1);
then CALL APPEND (M1, M2):

(2) See those procedures for special and normal cases.

E. The REPLACE Procedure
This procedure, called by the statement

CALL REPLACE (.M1, M2, FIRST, LAST);

sets the substring of M1 defined by the values of FIRST and
LAST to be equal to the characters M2(1) to M2(LAST -
FIRST + 1). The string M1 ought to be of length at least
LAST.

ll. Length Manipulations

The length manipulation procedures are

NULL for making a string empty
TRUNCATE for truncating a string

A. The NULL Procedure

The procedure, called by the statement
CALL NULL (.M1);
sets the length of the string M1 to zero.

B. The TRUNCATE Procedure

This procedure, called by the statement

CALL TRUNCATE (M1, LAST)

truncates the string M1 to length LAST, provided MI is of

length greater than LAST prior to the call.

lll. Comparison

The procedure, COMPARE, is used to compare two
strings. The procedure returns a value according to

0. string 1 less than string 2

1, string 1 = string 2

2, string 1 greater than string 2
The returned value can therefore be tested as a logical
expression having value TRUE if the strings are equal and
FALSE otherwise, or the value can be used in a relational

expression or a DO-case construction. The expression to
obtain the comparison value is

.COMPARE (.M1,.M2)

where M1 and M2 are the strings to be compared. If one
string is shorter than the other, the shorter is considered to
be rounded out with blanks for comparison purposes.

IV. Conversions

The procedures

BINSTO$HEX
BINSTOS$DEC
HEXTOBIN
DEC$TOSBIN

convert binary values to their ASCII representations in either
hexadecimal or decimal to binary.

The calling sequences are similar:

CALL BINTOHEX (BINSNO,.M);
CALL BINSTOSDEC (BINSNO,.M);
Y = HEXTOBIN(.M);
Z = DECTOBIN(.M);

For the latter two cases, the procedure actually produces
an address value as its result. Note that the global variable,
SYNTAX, is set according to

SYNTAX = 0 if no syntax errors

SYNTAX = 1 if a syntax error was discovered

The conversions that produce strings generate left-justified
strings containing one space on the right-hand side.

103

Appendix D

Arithmetic Procedures

Because of the receiver/exciter control assembly’s need
for high precision, the software for fixed-length, variable-
point operations has been implemented.

l. Fixed-Point Operations

These operations require definition of a global data item
called FXPT$LENGTH, which describes the length of all the
fixed point numbers in bytes. The internal structure of a
fixed point number is a packed decimal digit string with two
digits per data byte. The sign of a fixed point number is
determined by the leftmost byte of the number. A zero here
indicates a positive number, while any nonzero value
indicates a negative number. Hence, the precision used by a
program is 2*¥*FXPTSLENGTH - 2 digits, because of the
presence of the sign.

104

The calling sequence
CALL FXPTADD (.A,.B,.0);
calculates A = B + C,
CALL FXPTSUB (.A,.B,.C);
calculates A =B - C,
CALL FXPTMPY (.A,.B,.C);

calculates A = B*C. In all these circumstances, the array A
must be distinguished from the arrays B and C. That is,

CALL FXPTADD (.A,B,.A);

is illegal.

